Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection.

Identifieur interne : 000498 ( Main/Exploration ); précédent : 000497; suivant : 000499

Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection.

Auteurs : Allison Fialkowski [États-Unis] ; Yael Gernez [États-Unis] ; Puneeta Arya [États-Unis] ; Katja G. Weinacht [États-Unis] ; T Bernard Kinane [États-Unis] ; Lael M. Yonker [États-Unis]

Source :

RBID : pubmed:32710693

Descripteurs français

English descriptors

Abstract

The difference in morbidity and mortality between adult and pediatric coronavirus disease 2019 infections is dramatic. Understanding pediatric-specific acute and delayed immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for the development of vaccination strategies, immune-targeted therapies, and treatment and prevention of multisystem inflammatory syndrome in children. The goal of this review is to highlight research developments in the understanding of the immune responses to SARS-CoV-2 infections, with a specific focus on age-related immune responses.

DOI: 10.1002/ppul.24981
PubMed: 32710693


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection.</title>
<author>
<name sortKey="Fialkowski, Allison" sort="Fialkowski, Allison" uniqKey="Fialkowski A" first="Allison" last="Fialkowski">Allison Fialkowski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gernez, Yael" sort="Gernez, Yael" uniqKey="Gernez Y" first="Yael" last="Gernez">Yael Gernez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatric Allergy and Immunology, Stanford University, Stanford, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Pediatric Allergy and Immunology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Arya, Puneeta" sort="Arya, Puneeta" uniqKey="Arya P" first="Puneeta" last="Arya">Puneeta Arya</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Cardiology, Massachusetts General Hospital for Children, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Division of Cardiology, Massachusetts General Hospital for Children, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Weinacht, Katja G" sort="Weinacht, Katja G" uniqKey="Weinacht K" first="Katja G" last="Weinacht">Katja G. Weinacht</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kinane, T Bernard" sort="Kinane, T Bernard" uniqKey="Kinane T" first="T Bernard" last="Kinane">T Bernard Kinane</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Pulmonary, Massachusetts General Hospital for Children, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Division of Pulmonary, Massachusetts General Hospital for Children, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yonker, Lael M" sort="Yonker, Lael M" uniqKey="Yonker L" first="Lael M" last="Yonker">Lael M. Yonker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Pulmonary, Massachusetts General Hospital for Children, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Division of Pulmonary, Massachusetts General Hospital for Children, Boston</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32710693</idno>
<idno type="pmid">32710693</idno>
<idno type="doi">10.1002/ppul.24981</idno>
<idno type="wicri:Area/Main/Corpus">000476</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000476</idno>
<idno type="wicri:Area/Main/Curation">000476</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000476</idno>
<idno type="wicri:Area/Main/Exploration">000476</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection.</title>
<author>
<name sortKey="Fialkowski, Allison" sort="Fialkowski, Allison" uniqKey="Fialkowski A" first="Allison" last="Fialkowski">Allison Fialkowski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gernez, Yael" sort="Gernez, Yael" uniqKey="Gernez Y" first="Yael" last="Gernez">Yael Gernez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatric Allergy and Immunology, Stanford University, Stanford, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Pediatric Allergy and Immunology, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Arya, Puneeta" sort="Arya, Puneeta" uniqKey="Arya P" first="Puneeta" last="Arya">Puneeta Arya</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Cardiology, Massachusetts General Hospital for Children, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Division of Cardiology, Massachusetts General Hospital for Children, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Weinacht, Katja G" sort="Weinacht, Katja G" uniqKey="Weinacht K" first="Katja G" last="Weinacht">Katja G. Weinacht</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kinane, T Bernard" sort="Kinane, T Bernard" uniqKey="Kinane T" first="T Bernard" last="Kinane">T Bernard Kinane</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Pulmonary, Massachusetts General Hospital for Children, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Division of Pulmonary, Massachusetts General Hospital for Children, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yonker, Lael M" sort="Yonker, Lael M" uniqKey="Yonker L" first="Lael M" last="Yonker">Lael M. Yonker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Harvard Medical School, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Pulmonary, Massachusetts General Hospital for Children, Boston, Massachusetts.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Division of Pulmonary, Massachusetts General Hospital for Children, Boston</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pediatric pulmonology</title>
<idno type="eISSN">1099-0496</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive Immunity (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Aging (immunology)</term>
<term>COVID-19 (immunology)</term>
<term>Child (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Immunity, Innate (MeSH)</term>
<term>SARS-CoV-2 (physiology)</term>
<term>Systemic Inflammatory Response Syndrome (immunology)</term>
<term>Virus Internalization (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte (MeSH)</term>
<term>Enfant (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Immunité acquise (MeSH)</term>
<term>Immunité innée (MeSH)</term>
<term>Pénétration virale (MeSH)</term>
<term>Syndrome de réponse inflammatoire généralisée (immunologie)</term>
<term>Vieillissement (immunologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Syndrome de réponse inflammatoire généralisée</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Aging</term>
<term>COVID-19</term>
<term>Systemic Inflammatory Response Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptive Immunity</term>
<term>Adult</term>
<term>Child</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Enfant</term>
<term>Humains</term>
<term>Immunité acquise</term>
<term>Immunité innée</term>
<term>Pénétration virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The difference in morbidity and mortality between adult and pediatric coronavirus disease 2019 infections is dramatic. Understanding pediatric-specific acute and delayed immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for the development of vaccination strategies, immune-targeted therapies, and treatment and prevention of multisystem inflammatory syndrome in children. The goal of this review is to highlight research developments in the understanding of the immune responses to SARS-CoV-2 infections, with a specific focus on age-related immune responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32710693</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>12</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1099-0496</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>55</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>Pediatric pulmonology</Title>
<ISOAbbreviation>Pediatr Pulmonol</ISOAbbreviation>
</Journal>
<ArticleTitle>Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection.</ArticleTitle>
<Pagination>
<MedlinePgn>2556-2564</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ppul.24981</ELocationID>
<Abstract>
<AbstractText>The difference in morbidity and mortality between adult and pediatric coronavirus disease 2019 infections is dramatic. Understanding pediatric-specific acute and delayed immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for the development of vaccination strategies, immune-targeted therapies, and treatment and prevention of multisystem inflammatory syndrome in children. The goal of this review is to highlight research developments in the understanding of the immune responses to SARS-CoV-2 infections, with a specific focus on age-related immune responses.</AbstractText>
<CopyrightInformation>© 2020 Wiley Periodicals LLC.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fialkowski</LastName>
<ForeName>Allison</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Harvard Medical School, Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gernez</LastName>
<ForeName>Yael</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0001-6453-2901</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pediatric Allergy and Immunology, Stanford University, Stanford, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arya</LastName>
<ForeName>Puneeta</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Harvard Medical School, Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Cardiology, Massachusetts General Hospital for Children, Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weinacht</LastName>
<ForeName>Katja G</ForeName>
<Initials>KG</Initials>
<AffiliationInfo>
<Affiliation>Department of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kinane</LastName>
<ForeName>T Bernard</ForeName>
<Initials>TB</Initials>
<Identifier Source="ORCID">0000-0002-5668-1066</Identifier>
<AffiliationInfo>
<Affiliation>Harvard Medical School, Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Pulmonary, Massachusetts General Hospital for Children, Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yonker</LastName>
<ForeName>Lael M</ForeName>
<Initials>LM</Initials>
<Identifier Source="ORCID">0000-0003-1711-8227</Identifier>
<AffiliationInfo>
<Affiliation>Harvard Medical School, Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Pulmonary, Massachusetts General Hospital for Children, Boston, Massachusetts.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Pediatr Pulmonol</MedlineTA>
<NlmUniqueID>8510590</NlmUniqueID>
<ISSNLinking>1099-0496</ISSNLinking>
</MedlineJournalInfo>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000705967">pediatric multisystem inflammatory disease, COVID-19 related</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056704" MajorTopicYN="N">Adaptive Immunity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="Y">SARS-CoV-2</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018746" MajorTopicYN="N">Systemic Inflammatory Response Syndrome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">SARS-CoV-2 infection</Keyword>
<Keyword MajorTopicYN="Y">age-related immune response</Keyword>
<Keyword MajorTopicYN="Y">childhood COVID-19</Keyword>
<Keyword MajorTopicYN="Y">pediatric COVID-19</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32710693</ArticleId>
<ArticleId IdType="doi">10.1002/ppul.24981</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Oberfeld B, Achanta A, Carpenter K, et al. SnapShot: COVID-19. Cell. 2020;181(4):954-954.e1. https://doi.org/10.1016/j.cell.2020.04.013</Citation>
</Reference>
<Reference>
<Citation>Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-273. https://doi.org/10.1038/s41586-020-2012-7</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27(2):taaa021. https://doi.org/10.1093/jtm/taaa021</Citation>
</Reference>
<Reference>
<Citation>Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020;382(17):1663-1665. https://doi.org/10.1056/NEJMc2005073</Citation>
</Reference>
<Reference>
<Citation>Furukawa NW, Brooks JT, Sobel J. Evidence supporting transmission of Severe Acute Respiratory Syndrome 2 while presymptomatic or asymptomatic. Emerg Infect Dis J. 2020;26(7), https://doi.org/10.3201/eid2607.201595</Citation>
</Reference>
<Reference>
<Citation>Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669-677. https://doi.org/10.1016/S1473-3099(20)30243-7</Citation>
</Reference>
<Reference>
<Citation>Center for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): evidence used to update the list of underlying medical conditions that increase a person's risk of severe illness from COVID-19; 2020. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/evidence-table.html. Accessed June 30, 2020.</Citation>
</Reference>
<Reference>
<Citation>DeBiasi RL, Song X, Delaney M, et al. Severe COVID-19 in children and young adults in the Washington, DC metropolitan region. J Pediatr. 2020;223:199-203.e1. https://doi.org/10.1016/j.jpeds.2020.05.007</Citation>
</Reference>
<Reference>
<Citation>Chao JY, Derespina KR, Herold BC, et al. Clinical characteristics and outcomes of hospitalized and critically ill children and adolescents with coronavirus disease 2019 (COVID-19) at a tertiary care medical center in New York City. J Pediatr. 2020;223:14-19.e2. https://doi.org/10.1016/j.jpeds.2020.05.006</Citation>
</Reference>
<Reference>
<Citation>Pilishvili T, Razzaghi H, Reed N, Ritchey M, Sauber-Schatz E. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)-United States, February 12-March 16, 2020. Morb Mortal Wkly Rep. 2020;69(12):343-346. https://doi.org/10.15585/mmwr.mm6912e2</Citation>
</Reference>
<Reference>
<Citation>Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study [published online ahead of print]. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(20)30287-5</Citation>
</Reference>
<Reference>
<Citation>Lu X, Xiang Y, Du H, Wong GW-K. SARS-CoV-2 infection in children-understanding the immune responses and controlling the pandemic. Pediatr Allergy Immunol. 2020;31(5):449-453. https://doi.org/10.1111/pai.13267</Citation>
</Reference>
<Reference>
<Citation>Wong GW, Fok TF. Severe acute respiratory syndrome (SARS) in children. Pediatr Pulmonol. 2004;37(suppl 26):69-71. https://doi.org/10.1002/ppul.70056</Citation>
</Reference>
<Reference>
<Citation>Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242. https://doi.org/10.1001/jama.2020.2648</Citation>
</Reference>
<Reference>
<Citation>Castagnoli R, Votto M, Licari A, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review [published online ahead of print]. JAMA Pediatr. 2020. https://doi.org/10.1001/jamapediatrics.2020.1467</Citation>
</Reference>
<Reference>
<Citation>Bialek S, Gierke R, Hughes M, McNamara LA, Pilishvili T, Skoff T. Coronavirus disease 2019 in children-United States, February 12-April 2, 2020. Morb Mortal Wkly Rep. 2020;69(14):422-426. https://doi.org/10.15585/mmwr.mm6914e4</Citation>
</Reference>
<Reference>
<Citation>Matricardi PM, Negro RWD, Nisini R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol. 2020;31(5):454-470. https://doi.org/10.1111/pai.13271</Citation>
</Reference>
<Reference>
<Citation>Choi S-H, Kim HW, Kang J-M, Kim DH, Cho EY. Epidemiology and clinical features of coronavirus disease 2019 in children. Clin Exp Pediatr. 2020;63(4):125-132. https://doi.org/10.3345/cep.2020.00535</Citation>
</Reference>
<Reference>
<Citation>Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020;55(5):1169-1174. https://doi.org/10.1002/ppul.24718</Citation>
</Reference>
<Reference>
<Citation>Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020;109(6):1088-1095. https://doi.org/10.1111/apa.15270</Citation>
</Reference>
<Reference>
<Citation>Belhadjer Z, Méot M, Bajolle F, et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic [published online ahead of print]. Circulation. 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.048360</Citation>
</Reference>
<Reference>
<Citation>Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383(334):346. https://doi.org/10.1056/NEJMoa2021680</Citation>
</Reference>
<Reference>
<Citation>Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607-1608. https://doi.org/10.1016/S0140-6736(20)31094-1</Citation>
</Reference>
<Reference>
<Citation>Viner RM, Whittaker E. Kawasaki-like disease: emerging complication during the COVID-19 pandemic. Lancet. 2020;395(10239):1741-1743. https://doi.org/10.1016/S0140-6736(20)31129-6</Citation>
</Reference>
<Reference>
<Citation>Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5</Citation>
</Reference>
<Reference>
<Citation>Morand A, Urbina D, Fabre A. COVID-19 and Kawasaki like disease: the known-known, the unknown-known and the unknown-unknown. Preprints. 2020:2020050160. https://doi.org/10.20944/preprints202005.0160.v1</Citation>
</Reference>
<Reference>
<Citation>Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. https://doi.org/10.1038/s41591-020-0820-9</Citation>
</Reference>
<Reference>
<Citation>Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-292. https://doi.org/10.1016/j.cell.2020.02.058</Citation>
</Reference>
<Reference>
<Citation>Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263. https://doi.org/10.1126/science.abb2507</Citation>
</Reference>
<Reference>
<Citation>Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280. https://doi.org/10.1016/j.cell.2020.02.052</Citation>
</Reference>
<Reference>
<Citation>AguiarJennifer A., Tremblay Benjamin J-M., Mansfield Michael J., Woody Owen, Lobb Briallen, Banerjee Arinjay, Chandiramohan Abiram, Tiessen Nicholas, Cao Quynh, Dvorkin-Gheva Anna, Revill Spencer, Miller Matthew S., Carlsten Christopher, Organ Louise, Joseph Chitra, John Alison, Hanson Paul, Austin Richard, McManus Bruce M., Jenkins Gisli, Mossman Karen, Ask Kjetil, Doxey Andrew C., Hirota Jeremy A. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. [published online ahead of print]. European Respiratory Journal. 2020;2001123. https://doi.org/10.1183/13993003.01123-2020</Citation>
</Reference>
<Reference>
<Citation>Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681-687. https://doi.org/10.1038/s41591-020-0868-6</Citation>
</Reference>
<Reference>
<Citation>Ziegler C, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is enriched in specific cell subsets across tissues. Cell. 2020;181(5):1016-1035.e19. https://doi.org/10.1016/j.cell.2020.04.035</Citation>
</Reference>
<Reference>
<Citation>Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020;323(23):2427-2429. https://doi.org/10.1001/jama.2020.8707</Citation>
</Reference>
<Reference>
<Citation>Lee IT, Nakayama T, Wu C-T, et al. Robust ACE2 protein expression localizes to the motile cilia of the respiratory tract epithelia and is not increased by ACE inhibitors or angiotensin receptor blockers. medRxiv. 2020. https://doi.org/10.1101/2020.05.08.20092866</Citation>
</Reference>
<Reference>
<Citation>Schuler BA, Habermann AC, Plosa EJ, et al. Age-related expression of SARS-CoV-2 priming protease TMPRSS2 in the developing lung. bioRxiv. 2020. https://doi.org/10.1101/2020.05.22.111187</Citation>
</Reference>
<Reference>
<Citation>Wang A, Chiou J, Poirion OB, et al. Single nucleus multiomic profiling reveals age-dynamic regulation of host genes associated with SARS-CoV-2 infection. bioRxiv. 2020. https://doi.org/10.1101/2020.04.12.037580</Citation>
</Reference>
<Reference>
<Citation>Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26 and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors [published online ahead of print]. Allergy. 2020. https://doi.org/10.1111/all.14429</Citation>
</Reference>
<Reference>
<Citation>Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res. 2001;61(5):2276-2281.</Citation>
</Reference>
<Reference>
<Citation>Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: a cell's response to stress. Life Sci. 2019;226:156-163. https://doi.org/10.1016/j.lfs.2019.04.022</Citation>
</Reference>
<Reference>
<Citation>Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9</Citation>
</Reference>
<Reference>
<Citation>Baron SA, Devaux C, Colson P, Raoult D, Rolain J-M. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J of Antimicrob Agents. 2020;55(4):105944. https://doi.org/10.1016/j.ijantimicag.2020.105944</Citation>
</Reference>
<Reference>
<Citation>Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30(17):3481-3500. https://doi.org/10.1038/emboj.2011.286</Citation>
</Reference>
<Reference>
<Citation>Monzani A, Genoni G, Scopinaro A, Pistis G, Kozel D, Secco GG. QTc evaluation in COVID-19 patients treated with chloroquine/hydroxychloroquine. Eur J of Clin Invest. 2020;50(6):e13258. https://doi.org/10.1111/eci.13258</Citation>
</Reference>
<Reference>
<Citation>Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. https://doi.org/10.1038/s41422-020-0282-0</Citation>
</Reference>
<Reference>
<Citation>Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382(25):2411-2418. https://doi.org/10.1056/NEJMoa2012410</Citation>
</Reference>
<Reference>
<Citation>Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. https://doi.org/10.3389/fimmu.2014.00491</Citation>
</Reference>
<Reference>
<Citation>Delves PJ, Roitt IM. The immune system. N Engl J Med. 2000;343(2):108-117. https://doi.org/10.1056/NEJM200007133430207</Citation>
</Reference>
<Reference>
<Citation>Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026</Citation>
</Reference>
<Reference>
<Citation>Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-374. https://doi.org/10.1038/s41577-020-0311-8</Citation>
</Reference>
<Reference>
<Citation>Mosaddeghi P, Negahdaripour M, Dehghani Z, et al. Therapeutic approaches for COVID-19 based on the dynamics of interferon-mediated immune responses. Preprints. 2020:2020030206. https://doi.org/10.20944/preprints202003.0206.v1</Citation>
</Reference>
<Reference>
<Citation>Maughan EF, Nigro E, Pennycuick A, et al. Cell-intrinsic differences between human airway epithelial cells from children and adults. bioRxiv. 2020. https://doi.org/10.1101/2020.04.20.027144v1</Citation>
</Reference>
<Reference>
<Citation>Henry BM, Lippi G, Plebani M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clin Chem Lab Med. 2020;58(7):1135-1138. https://doi.org/10.1515/cclm-2020-0272</Citation>
</Reference>
<Reference>
<Citation>Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. https://doi.org/10.1084/jem.20200652</Citation>
</Reference>
<Reference>
<Citation>Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. https://doi.org/10.1172/jci.insight.138999</Citation>
</Reference>
<Reference>
<Citation>Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. https://doi.org/10.1001/jama.2020.1585</Citation>
</Reference>
<Reference>
<Citation>Fox SE, Akmatbekov A, Harbert JL, Li G, Brown Q, Vander Heide RS. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. medRxiv. 2020. https://doi.org/10.1101/2020.04.06.20050575v1</Citation>
</Reference>
<Reference>
<Citation>Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-362. https://doi.org/10.1038/s41577-020-0331-4</Citation>
</Reference>
<Reference>
<Citation>van Royen N, Hoefer I, Böttinger M, et al. Local monocyte chemoattractant protein-1 therapy increases collateral artery formation in apolipoprotein E-deficient mice but induces systemic monocytic CD11b expression, neointimal formation, and plaque progression. Circ Res. 2003;92(2):218-225. https://doi.org/10.1161/01.res.0000052313.23087.3f</Citation>
</Reference>
<Reference>
<Citation>De Martinis M, Modesti M, Ginaldi L. Phenotypic and functional changes of circulating monocytes and polymorphonuclear leucocytes from elderly persons. Immunol Cell Biol. 2004;82(4):415-420. https://doi.org/10.1111/j.0818-9641.2004.01242.x</Citation>
</Reference>
<Reference>
<Citation>Albright JM, Dunn RC, Shults JA, Boe DM, Afshar M, Kovacs EJ. Advanced age alters monocyte and macrophage responses. Antioxid Redox Sign. 2016;25(15):805-815. https://doi.org/10.1089/ars.2016.6691</Citation>
</Reference>
<Reference>
<Citation>Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. 2020;72(7):1059-1063. https://doi.org/10.1002/art.41285</Citation>
</Reference>
<Reference>
<Citation>Grom AA, Mellins ED. Macrophage activation syndrome: advances towards understanding pathogenesis. Curr Opin Rheumatol. 2010;22(5):561-566. https://doi.org/10.1097/01.bor.0000381996.69261.71</Citation>
</Reference>
<Reference>
<Citation>Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-539. https://doi.org/10.1007/s00281-017-0629-x</Citation>
</Reference>
<Reference>
<Citation>Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensiv Care Med. 2020;46(5):846-848. https://doi.org/10.1007/s00134-020-05991-x</Citation>
</Reference>
<Reference>
<Citation>Schouten LR, van Kaam AH, Kohse F, et al. Age-dependent differences in pulmonary host responses in ARDS: a prospective observational cohort study. Ann Intensiv Care. 2019;9(1):55. https://doi.org/10.1186/s13613-019-0529-4</Citation>
</Reference>
<Reference>
<Citation>Pain CE, Felsenstein S, Cleary G, et al. Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms. Lancet Rheumatol. 2020;2(7):376-379. https://doi.org/10.1016/S2665-9913(20)30137-5</Citation>
</Reference>
<Reference>
<Citation>Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020;395(10239):1771-1778. https://doi.org/10.1016/S0140-6736(20)31103-X</Citation>
</Reference>
<Reference>
<Citation>Hennon TR, Penque MD, Abdul-Aziz R, et al. COVID-19 associated multisystem inflammatory syndrome in children (MIS-C) guidelines; a western New York approach. Prog Pediat Cardiol. 2020;57:101232. https://doi.org/10.1016/j.ppedcard.2020.101232</Citation>
</Reference>
<Reference>
<Citation>Simpson JM, Newburger JW. Multi-system inflammatory syndrome in children in association with COVID-19 [published online ahead of print]. Circulation. 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.048726</Citation>
</Reference>
<Reference>
<Citation>Flint SJ, Racaniello VR, Rall GF, Skalka AM. Principles of Virology. 4th ed. Washington, DC: ASM Press; 2015.</Citation>
</Reference>
<Reference>
<Citation>Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019 [published online ahead of print]. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa344</Citation>
</Reference>
<Reference>
<Citation>Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med. 2008;205(3):711-723. https://doi.org/10.1084/jem.20071140</Citation>
</Reference>
<Reference>
<Citation>Linton P-J, Li SP, Zhang Y, Bautista B, Huynh Q, Trinh T. Intrinsic versus environmental influences on T-cell responses in aging. Immunol Rev. 2005;205:207-219. https://doi.org/10.1111/j.0105-2896.2005.00266.x</Citation>
</Reference>
<Reference>
<Citation>Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol. 2000;18:529-560. https://doi.org/10.1146/annurev.immunol.18.1.529</Citation>
</Reference>
<Reference>
<Citation>Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Intern. 2009;22(11):1041-1050. https://doi.org/10.1111/j.1432-2277.2009.00927.x</Citation>
</Reference>
<Reference>
<Citation>Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533-535. https://doi.org/10.1038/s41423-020-0402-2</Citation>
</Reference>
<Reference>
<Citation>Li Y, Guo F, Cao Y, Li L, Guo Y. Insight into COVID-2019 for pediatricians. Pediatr Pulmonol. 2020;55(5):E1-E4. https://doi.org/10.1002/ppul.24734</Citation>
</Reference>
<Reference>
<Citation>Liu A, Li Y, peng J, Huang Y, Xu D. Antibody responses against SARS-CoV-2 in COVID-19 patients [published online ahead of print]. Journal of Medical Virology. 2020. https://doi.org/10.1002/jmv.26241</Citation>
</Reference>
<Reference>
<Citation>Yurttutan S, İpek S, Güllü UU. Why the SARS-Cov-2 has prolonged spreading time in children? Pediatr Pulmonol. 2020;55(7):1544-1545. https://doi.org/10.1002/ppul.24795</Citation>
</Reference>
<Reference>
<Citation>Long Q-X, Liu B-Z, Deng H-J, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26(6):845-848. https://doi.org/10.1038/s41591-020-0897-1</Citation>
</Reference>
<Reference>
<Citation>Selva KJ, van de Sandt CE, Lemke MM, et al. Distinct systems serology features in children, elderly and COVID patients. medRxiv. 2020. https://doi.org/10.1101/2020.05.11.20098459</Citation>
</Reference>
<Reference>
<Citation>Zohar T, Alter G. Dissecting antibody-mediated protection against SARS-CoV-2. Nat Rev Immunol. 2020;20(7):392-394. https://doi.org/10.1038/s41577-020-0359-5</Citation>
</Reference>
<Reference>
<Citation>Soresina A, Moratto D, Chiarini M, et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol. 2020;31(5):565-569. https://doi.org/10.1111/pai.13263</Citation>
</Reference>
<Reference>
<Citation>Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell. 2020;182(1):73-84.e16. https://doi.org/10.1016/j.cell.2020.05.025</Citation>
</Reference>
<Reference>
<Citation>Galanti M, Shaman J. Direct observation of repeated infections with endemic coronaviruses. medRxiv. 2020. https://doi.org/10.1101/2020.04.27.20082032</Citation>
</Reference>
<Reference>
<Citation>Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490-502. https://doi.org/10.1016/j.tim.2016.03.003</Citation>
</Reference>
<Reference>
<Citation>Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nat. 2020;579(7798):265-269. https://doi.org/10.1038/s41586-020-2008-3</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Fialkowski, Allison" sort="Fialkowski, Allison" uniqKey="Fialkowski A" first="Allison" last="Fialkowski">Allison Fialkowski</name>
</region>
<name sortKey="Arya, Puneeta" sort="Arya, Puneeta" uniqKey="Arya P" first="Puneeta" last="Arya">Puneeta Arya</name>
<name sortKey="Arya, Puneeta" sort="Arya, Puneeta" uniqKey="Arya P" first="Puneeta" last="Arya">Puneeta Arya</name>
<name sortKey="Gernez, Yael" sort="Gernez, Yael" uniqKey="Gernez Y" first="Yael" last="Gernez">Yael Gernez</name>
<name sortKey="Kinane, T Bernard" sort="Kinane, T Bernard" uniqKey="Kinane T" first="T Bernard" last="Kinane">T Bernard Kinane</name>
<name sortKey="Kinane, T Bernard" sort="Kinane, T Bernard" uniqKey="Kinane T" first="T Bernard" last="Kinane">T Bernard Kinane</name>
<name sortKey="Weinacht, Katja G" sort="Weinacht, Katja G" uniqKey="Weinacht K" first="Katja G" last="Weinacht">Katja G. Weinacht</name>
<name sortKey="Yonker, Lael M" sort="Yonker, Lael M" uniqKey="Yonker L" first="Lael M" last="Yonker">Lael M. Yonker</name>
<name sortKey="Yonker, Lael M" sort="Yonker, Lael M" uniqKey="Yonker L" first="Lael M" last="Yonker">Lael M. Yonker</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000498 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000498 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32710693
   |texte=   Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32710693" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021